Molecular detection of respiratory pathogens

MATERIALS AND METHODS

RT-PCR

RT-PCR was performed in a commercial LightCycler 480 instrument (Roche Diagnostics, Indianapolis, IN). Reactions were performed in a final volume of 20 μL containing 10 μL of LightCycler 480 Master Mix, 0.8 μL of each primer, and 1 μL of cDNA template. The cycling conditions were as follows: initial denaturation at 95°C for 10 minutes, followed by 45 cycles of 95°C for 15 seconds, 60°C for 30 seconds, and 72°C for 30 seconds. The data were analyzed using the LightCycler 480 software (Roche Diagnostics).

Results

RT-PCR revealed the presence of **Influenza A** and **Influenza B** in the sample. The patient was found to be co-infected with both viruses, which is a common finding in the winter season. The results also indicated the presence of **rhinovirus**, **adenovirus**, and **respiratory syncytial virus**. These findings are consistent with the clinical presentation of the patient, which included fever, cough, and respiratory distress.

DISCUSSION

The results of this study highlight the importance of using multiplex RT-PCR for the detection of respiratory viruses. This approach is particularly useful in clinical settings where multiple viruses may be present simultaneously. The use of RT-PCR in conjunction with other diagnostic tests, such as DFA or rapid antigen tests, can provide a comprehensive evaluation of the patient's respiratory tract.

CONCLUSION

The presented case study demonstrates the utility of multiplex RT-PCR in the diagnosis of respiratory infections. The identification of multiple viruses in a single sample underscores the need for comprehensive diagnostic testing to guide appropriate treatment and public health interventions.