DEVELOPMENT OF A HIGH THROUGHPUT ASSAY FOR FABRY DISEASE IS EFFECTIVE FOR DETECTION OF AFFECTED VERSUS UNAFFECTED POPULATIONS

Thomas E. Mullen¹, Petra Olivova², Kristen van der Veen¹, X. Kate Zhang², Emmaline Cullen², Winnie Xin¹;
Katherine B. Sims¹, Joan Keutzer 2, and Marsha F. Browning¹

1-Massachusetts General Hospital Center for Human Genetics Research, Harvard Medical School, Boston, MA; 2–Genzyme Corporation, Framingham, MA;

INTRODUCTION

Fabry Disease is an X-linked lysosomal disorder due to an enzyme deficiency of alpha galactosidase A (AGAL, EC 3.2.1.22) resulting in multi-systemic organ dysfunction, including major manifestations of renal, neurological, and cardiac disease. Fabry disease is an inherited X-linked disorder, caused by a defect of the GLA gene. Deficient AGAL causes a neutral glycosidase with terminal α-galactose moieties, predominantly globotriaosylceramide (Gb3), GL-3, or ceramide trihexoside), to accumulate progressively in lysosomes. The diagnosis of Fabry disease is generally made in males by documenting deficient α-galactosidase activity in plasma, isolated leukocytes, and/or cultured cells which are labor intensive biochemical assays. Nearly 100% of affected males have total or near total enzyme deficiency. In females, however, measurement of AGAL enzyme activity is difficult to interpret, and some enzyme levels fall in the normal range. Although molecular testing is most reliable for diagnosis of females, it is not practical as a screening paradigm for large populations due to high cost. A rapid, cost-effective enzyme assay platform is needed to identify the indication for molecular testing.

METHODS

Enzymatic and molecular testing methods on the same filter paper or EDTA-collection tube was developed. 88 known Fabry patients (73% female) and 690 unaffected controls (41% female) were collected for validation following Clinical and Laboratory Standards Institute (CLSI) guidelines to create a Fabry Complete™ testing method. A complementary heteroduplex scanning method was developed for the GLA gene on a LightScanner Technology (Idaho Technology) to detect mutations in the GLA gene.

Enzyme Assay: The activity of lysosomal α-galactosidase A was quantitatively measured by detecting the fluorescence of 4-Methylumbelliferone (4-MU) generated by the substrate 4-Methylumbelliferylα-D-glucopyranoside (4-MUGal) is cleaved by AGAL in an acidic pH within 20 hours. Mean AGAL activity with standard deviation and 95% CI of mean were reported for each group. The statistical analysis in between groups was performed using parametric techniques. Means were compared by two-tailed unpaired t-test or one-way analysis of variance (ANOVA) with Turkey’s post test. The p-value of 0.05 was considered significant.

DNA Assay: A heteroduplex scanning method was developed using LightScanner Technology (Idaho Technology) to detect mutations in the GLA gene. Standards Institute (CLSI) guidelines to create a Fabry Complete™ testing method. A complementary heteroduplex scanning method was developed using LightScanner Instrument and Analysis Software. Mutant positive control samples are indicated in red while negative samples are indicated in grey. Specificity of 95% (n=35) and sensitivity of 100% were determined.

RESULTS

Tier 1 was effective in differentiating females with FD and not (59.43 vs 102.18 nM/punch*h, p<0.01) and males with FD and not (36.44 vs 120.47 nM/punch*h, p<0.01). Assay precision was determined to be 17.4% of the CV and LOD = 17.1 nM/punch*h. Validation of the mutational scanning technology revealed the molecular test could readily identify a variety of mutations in females as well as hemizygous males. These mutations included missense, nonsense, insertions, deletions, as well as deep intronic mutations associated with the cardiac phenotype associated with FD. Our mutational scanning method was determined to have a specificity of 95% and sensitivity of 100%.

CONCLUSIONS

A high-throughput method that combines enzyme activity determination for AGAL and molecular mutation detection is possible in a robust manner.

ACKNOWLEDGEMENTS

Thank you to the Fabry Support and Information Group (FSIG) for their foundation grant funding that allowed the development of this assay at MGH.

Additional thanks to the Lysosomal Disease Network (LDN); the nursing and phlebotomy staff at the Massachusetts General Hospital for Children; Virginia Clarke, RN and Kellie Burke; the MGH Neurogenetics Lab; Thomas E. Mullen1, Petra Olivova2, Kristen van der Veen1, X. Kate Zhang2, Emmaline Cullen2, Winnie Xin1; Katherine B. Sims1, Joan Keutzer 2, and Marsha F. Browning1; Rosemary Barone, Xin Feng, Lei O’Malley and Dr. Jorge Dotti.

Thank you for the continued support from ARCSUS Therapeutics and the MGH Lysosomal/Calvani Research Foundation Fund (MTRF) and Genzyme Genetics (XRS) as well as the many families affected with Fabry disease for participation in this study.